Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A.

نویسندگان

  • Yongchao Li
  • Diana C Irwin
  • David B Wilson
چکیده

Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A.

Amino acid modifications of the Thermobifida fusca Cel9A-68 catalytic domain or carbohydrate binding module 3c (CBM3c) were combined to create enzymes with changed amino acids in both domains. Bacterial crystalline cellulose (BC) and swollen cellulose (SWC) assays of the expressed and purified enzymes showed that three combinations resulted in 150% and 200% increased activity, respectively, and...

متن کامل

Comparison of family 9 cellulases from mesophilic and thermophilic bacteria.

Cellulases containing a family 9 catalytic domain and a family 3c cellulose binding module (CBM3c) are important components of bacterial cellulolytic systems. We measured the temperature dependence of the activities of three homologs: Clostridium cellulolyticum Cel9G, Thermobifida fusca Cel9A, and C. thermocellum Cel9I. To directly compare their catalytic activities, we constructed six new vers...

متن کامل

A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca.

Lignocellulosic biomass is digested in nature by the synergistic activities of enzymes with complementary properties, and understanding synergistic interactions will improve the efficiency of industrial biomass use for sustainable fuels and chemicals. Cel9A and Cel48A from a model bacterium, Thermobifida fusca (TfCel9A and TfCel48A, respectively), are two cellulases with different properties an...

متن کامل

Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium.

Phanerochaete chrysosporium cellulase genes were cloned and characterized. The cel61A product was structurally similar to fungal endoglucanases of glycoside hydrolase family 61, whereas the cel9A product revealed similarities to Thermobifida fusca Cel9A (E4), an enzyme with both endo- and exocellulase characteristics. The fungal Cel9A is apparently a membrane-bound protein, which is very unusua...

متن کامل

Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

Background Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 10  شماره 

صفحات  -

تاریخ انتشار 2007